Algebraic Proof Question Paper

Course	EdexcelIGCSE Maths
Section	2. Equations, Formulae \& Identities
Topic	Algebraic Proof
Difficulty	Very Hard

Time allowed: 60
Score: /44
Percentage: /100

Question 1

(i)

Factorise $2 t^{2}+5 t+2$.
(ii)
t is a positive whole number.
The expression $2 t^{2}+5 t+2$ can never have a value that is a prime number.
Explain why.

Question 2

n is an integer.
Prove algebraically that the sum of $\frac{1}{2} n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

Question 3

Here are the first five terms of an arithmetic sequence.

$$
\begin{array}{lllll}
7 & 13 & 19 & 25 & 31
\end{array}
$$

Prove that the difference between the squares of any two terms of the sequence is always a multiple of 24.

Question 4

Given that n can be any integer such that $n>1$, prove that $n^{2}-n$ is never an odd number.

Question 5

The product of two consecutive positive integers is added to the larger of the two integers.
Prove that the result is always a square number.

Question 6

Prove that when the sum of the squares of any two consecutive odd numbers is divided by 8 , the remainder is always 2
Show clear algebraic working.
[3 marks]

Question 7

Using algebra, prove that, given any 3 consecutive whole numbers, the sum of the square of the smallest number and the square of the largest number is always 2 more than twice the square of the middle number.
[3 marks]

Question 8

Using algebra, prove that, given any 3 consecutive even numbers, the difference between the square of the largest number and the square of the smallest number is always 8 times the middle number.

Question 9a

Here are the first four terms of a sequence of fractions.

$$
\begin{array}{llll}
\frac{1}{1} & \frac{2}{3} & \frac{3}{5} & \frac{4}{7}
\end{array}
$$

The numerators of the fractions form the sequence of whole numbers $1234 \ldots$
The denominators of the fractions form the sequence of odd numbers 1357 ...
Write down an expression, in terms of n, for the nth term of this sequence of fractions.

Question 9b

Using algebra, prove that when the square of any odd number is divided by 4 the remainder is 1

Question 10

The table gives information about the first six terms of a sequence of numbers.

Term number	1	2	3	4	5	6
Term of sequence	$\frac{1 \times 2}{2}$	$\frac{2 \times 3}{2}$	$\frac{3 \times 4}{2}$	$\frac{4 \times 5}{2}$	$\frac{5 \times 6}{2}$	$\frac{6 \times 7}{2}$

Prove algebraically that the sum of any two consecutive terms of this sequence is always a square number.

Question 11

Prove that $x^{2}+x+1$ is always positive.

Question 12a

The diagram shows a cross placed on a number grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60

L is the product of the left and right numbers of the cross.
T is the product of the top and bottom numbers of the cross.
M is the middle number of the cross.
Show that when $M=35, L-T=99$.

Question 12b

Prove that, for any position of the cross on the number grid above, $L-T=99$.

