Algebraic Proof

Question Paper

Course	EdexcelIGCSEMaths
Section	2. Equations, Formulae & Identities
Торіс	Algebraic Proof
Difficulty	Very Hard

Time allowed:	60
Score:	/44
Percentage:	/100

(i) Factorise $2t^2 + 5t + 2$.

(ii)

t is a positive whole number. The expression $2t^2+5t+2\,$ can never have a value that is a prime number. Explain why.

[1]

[2]

[3 marks]

Question 2

n is an integer.

Prove algebraically that the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

[2 marks]

Question 3

Here are the first five terms of an arithmetic sequence.

7 13 19 25 31

Prove that the difference between the squares of any two terms of the sequence is always a multiple of 24.

[6 marks]

Given that n can be any integer such that n > 1, prove that $n^2 - n$ is never an odd number.

[2 marks]

Question 5

The product of two consecutive positive integers is added to the larger of the two integers.

Prove that the result is always a square number.

[3 marks]

Prove that when the sum of the squares of any two consecutive odd numbers is divided by 8, the remainder is always 2 Show clear algebraic working.

[3 marks]

Question 7

Using algebra, prove that, given any 3 consecutive whole numbers, the sum of the square of the smallest number and the square of the largest number is always 2 more than twice the square of the middle number.

[3 marks]

Question 8

Using algebra, prove that, given any 3 consecutive even numbers, the difference between the square of the largest number and the square of the smallest number is always 8 times the middle number.

[3 marks]

Question 9a

Here are the first four terms of a sequence of fractions.

 $\frac{1}{1}$ $\frac{2}{3}$ $\frac{3}{5}$ $\frac{4}{7}$

The numerators of the fractions form the sequence of whole numbers 1 2 3 4 ... The denominators of the fractions form the sequence of odd numbers 1 3 5 7 ...

Write down an expression, in terms of n, for the nth term of this sequence of fractions.

[2 marks]

Question 9b

Using algebra, prove that when the square of any odd number is divided by $4\,{\rm the\,remainder\,is}\,1$

[3 marks]

Question 10

The table gives information about the first six terms of a sequence of numbers.

Term number	1	2	3	4	5	6
Term of sequence	1×2	2×3	3×4	4×5	5 × 6	6 × 7
	2	2	2	2	2	2

Prove algebraically that the sum of any two consecutive terms of this sequence is always a square number.

[4 marks]

Prove that $x^2 + x + 1$ is always positive.

[3 marks]

Question 12a

The diagram shows a cross placed on a number grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60

L is the product of the left and right numbers of the cross.

T is the product of the top and bottom numbers of the cross.

M is the middle number of the cross.

Show that when M = 35, L - T = 99.

[2 marks]

Question 12b

Prove that, for any position of the cross on the number grid above, L - T = 99.

[5 marks]